The Georgia Tech Center for Organic Photonics and Electronics (COPE) is a premier national and resource center that creates flexible organic photonic and electronic materials and devices that serve the information technology, telecommunications, energy, and defense sectors. COPE creates the opportunity for disruptive technologies by developing new materials with emergent properties and by providing new paradigms for device design and fabrication.

Latest News

  • Solar Cells from STAMI Members Reach the International Space Station for Testing

    Polymer and Perovskite solar cells fabricated in the labs of COPE Prof. Bernard Kippelen (Electrical and Computer Engineering) and COPE, GTPN Prof. Zhiqun Lin (Materials Science and Engineering) have been taken to the International Space Station (ISS) for testing in the harsh space environment as part of the MISSE-12 mission.

  • STAMI-COPE Co-Director Carlos Silva Elected to the Class of 2019 American Physical Society Fellows

    STAMI-COPE Co-Director Carlos Silva, Professor in the School of Physics and the School of Chemistry and Biochemistry, has been elected to the 2019 Class of American Physical Society Fellows "[f]or the groundbreaking development of ultrafast laser techniques for probing the transient photophysics of electro-optical and excitonic materials leading to novel and unique insights into charge-separation and carrier generation in organic photovoltaic systems." Congratulations, Professor Silva!

  • STAMI-COPE Professor Shannon Yee Developing Thermoelectric Polymers for Personal Climate Control

    STAMI-COPE Professor Shannon Yee and his team of Georgia Tech researchers are developing polymer-based thermoelectric (TE) materials for wearable devices to help people feel warmer or cooler on demand. The polymer TE materials could either harvest body heat to generate electricity or be used to produce a cooling sensation by hooking up a flexible battery to the circuitry.

  • Electrochromic Polymers Advanced in the Lab of GTPN and COPE Professor John Reynolds

    A serendipitous discovery by Graduate Student Dylan Christiansen led to polymers that quickly change color from completely clear to a range of vibrant hues — and back again. The work could have applications in everything from skyscraper windows that control the amount of light and heat coming in and out of a building, to switchable camouflage and visors for military applications, and even color-changing cosmetics and clothing. It also helps fill a knowledge gap in a key area of materials science and chemistry.

Carlos Silva

Jennifer Clark

Jennifer Curtis

Charles Ume

Tequila Harris

Samuel Graham

Baratunde Cola

Vladimir Tsukruk

Mohan Srinivasarao

Pages

Subscribe to COPE RSS